已知椭圆+=1(a>b>0)的右焦点为F,离心率为,过点F且倾斜角为60°的直线l与椭圆交于A、B两点(其中A点在x轴上方),则的值等于
A.2
B.
C.
D.
网友回答
C解析分析:设椭圆的右准线为l,设A、B两点在l上的射影分别为C、D,连接AC、BD,过点A作AG⊥BD利用圆锥曲线的统一定义,再结合直角△ABG中,∠BAG=30°,可求出边之间的长度之比,可求解答:如图,设椭圆的右准线为l,过A点作AC⊥l于C,过点B作BD⊥l于D,过A作AG⊥BD,垂直为D在直角△ABG中,∠BAG=30°,所以AB=BG,…①由圆锥曲线统一定义得:e===∴|FB|=|BD|,|AF|=|AC|②①②联立可得,BD-AC=2Bf-2AF=(AF+BF)∴AF=BF则=故选B点评:本题考察了圆锥曲线的统一定义的应用,结合解含有60°的直角三角形,利用椭圆的离心率进行求解,属于几何方法,运算量小,方便快捷.