等比数列{an}的前n项和Sn,又2S3=S1+S2,则公比q=________.

发布时间:2020-08-01 05:50:58

等比数列{an}的前n项和Sn,又2S3=S1+S2,则公比q=________.

网友回答

-

解析分析:根据数列前n项和的定义与等比数列的通项公式,将2S3=S1+S2化简整理,得a1q(2q+1)=0,再由等比数列各项不为0,得2q+1=0,解之即可得到公比的值.

解答:∵2S3=S1+S2,∴2(a1+a2+a3)=a1+(a1+a2)…(*)又∵数列{an}是公比为q的等比数列∴a2=a1q,a3=a1q2,2(a1+a2+a3)=a1+(a1+a2),代入(*)式,得2(a1+a1q+a1q2)=a1+(a1+a1q)化简整理,得2a1q2+a1q=0,即a1q(2q+1)=0∵a1≠0,∴2q+1=0,可得q=-故
以上问题属网友观点,不代表本站立场,仅供参考!