设函数f(x)=-x3+x2+(m2-1)x,(x∈R),其中m>0
(Ⅰ)求函数的单调区间与极值;
(Ⅱ)已知函数g(x)=f(x)+有三个互不相同的零点,求m的取值范围.
网友回答
解:(Ⅰ)∵f(x)=-x3+x2+(m2-1)x,(x∈R),
∴f′(x)=-x2+2x+m2-1.
令f′(x)=0,解得x=1-m,或x=1+m.
因为m>0,所以1+m>1-m.
当x变化时,f′(x),f(x)的变化情况如下表:
?x(-∞,1-m) ?1-m?(1-m,1+m)?1+m?(1+m,+∞)?f′(x) -?0+?0-?f(x)↓?极小值↑?极大值↓所以f(x)在(-∞,1-m),(1+m,+∞)内是减函数,在(1-m,1+m)内是增函数.
f(x)在x=1-m处取极小值f(1-m)=-=-.
f(x)在x=1+m处取极大值f(1+m)=-=.
(Ⅱ)∵f(x)=-x3+x2+(m2-1)x,
∴g(x)=f(x)+=-x3+x2+(m2-1)x+,
由(Ⅰ)知:g(x)在(-∞,1-m),(1+m,+∞)内是减函数,
在(1-m,1+m)内是增函数.
在x=1-m处取极小值,x=1+m处取极大值,
∵函数g(x)=f(x)+有三个互不相同的零点,且m>0,
∴,
解得.
解析分析:(Ⅰ)由已知我们易求出函数的导函数,令导函数值为0,我们则求出导函数的零点,根据m>0,我们可将函数的定义域分成若干个区间,分别在每个区间上讨论导函数的符号,即可得到函数的单调区间.(Ⅱ)根据题意求出函数的导数并且通过导数求出出原函数的单调区间,进而得到原函数的极值,因为函数存在三个不同的零点,所以结合函数的性质可得函数的极大值大于0,极小值小于0,即可单调