已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),则|PA|+|PF|取最小值时P点的坐标为________.

发布时间:2020-07-31 17:24:41

已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),则|PA|+|PF|取最小值时P点的坐标为________.

网友回答

(2,2)

解析分析:作PM⊥准线l,M为垂足,由抛物线的定义可得|PA|+|PF|=|PA|+|PM|,故当P,A,M三点共线时,|PA|+|PM|最小为|AM|,此时,P点的纵坐标为2,代入抛物线的方程可求得P点的横坐标为1,从而得到P点的坐标.

解答:由题意可得F(,0 ),准线方程为 x=-,作PM⊥准线l,M为垂足,由抛物线的定义可得|PA|+|PF|=|PA|+|PM|,故当P,A,M三点共线时,|PA|+|PM|最小为|AM|=3-(-)=,此时,P点的纵坐标为2,代入抛物线的方程可求得P点的横坐标为2,故P点的坐标为(2,2),故
以上问题属网友观点,不代表本站立场,仅供参考!