函数f(x)=ax2+bx+c(a≠0)的图象关于直线对称.据此可推测,对任意的非零实数a,b,c,m,n,p,关于x的方程m[f(x)]2+nf(x)+p=0的解集都不可能是A.{1,2}B.{1,4}C.{1,2,3,4}D.{1,4,16,64}
网友回答
D
解析分析:根据函数f(x)的对称性,因为m[f(x)]2+nf(x)+p=0的解应满足y1=ax2+bx+c,y2=ax2+bx+c,进而可得到方程m[f(x)]2+nf(x)+p=0的根,应关于对称轴x=对称,对于D中4个数无论如何组合都找不到满足条件的对称轴,故解集不可能是D.
解答:∵f(x)=ax2+bx+c的对称轴为直线x=令设方程m[f(x)]2+nf(x)+p=0的解为f1(x),f2(x) 则必有f1(x)=y1=ax2+bx+c,f2(x)=y2=ax2+bx+c那么从图象上看,y=y1,y=y2是一条平行于x轴的直线它们与f(x)有交点由于对称性,则方程y1=ax2+bx+c的两个解x1,x2要关于直线x=对称也就是说x1+x2=同理方程y2=ax2+bx+c的两个解x3,x4也要关于直线x=对称那就得到x3+x4=,在C中,可以找到对称轴直线x=2.5,也就是1,4为一个方程的解,2,3为一个方程的解所以得到的解的集合可以是{1,2,3,4}而在D中,{1,4,16,64}找不到这样的组合使得对称轴一致,也就是说无论怎么分组,都没办法使得其中两个的和等于另外两个的和故