填空题在等差数列{an}中,a1为首项,Sn是其前n项的和,将整理为后可知:点(n为正整数)都在直线上,类似地,若{an}是首项为a1,公比为q(q≠1)的等比数列,则点P1(a1,S1),P2(a2,S2),…,Pn(an,Sn),…(n为正整数)在直线________上.
网友回答
解析分析:由加法类比推理为乘法,由减法类比推理为除法,由算术平均数类比推理为几何平均数等,可以类比上述性质,得出:若{an}是首项为a1,公比为q(q≠1)的等比数列,则点P1(a1,S1),P2(a2,S2),…,Pn(an,Sn),…(n为正整数)在直线 上.解答:若{an}是首项为a1,公比为q(q≠1)的等比数列,则其前n项和Sn==,说明Pn(an,Sn)在在直线 上即:点P1(a1,S1),P2(a2,S2),…,Pn(an,Sn),…(n为正整数)在直线 上.故