几位同学在研究函数(x∈R)时,给出了下面几个结论:①函数f(x)的值域为(-1,1);②若x1≠x2,则一定有f(x1)≠f(x2);③f(x)在(0,+∞)是增函

发布时间:2020-07-31 20:01:21

几位同学在研究函数(x∈R)时,给出了下面几个结论:
①函数f(x)的值域为(-1,1);②若x1≠x2,则一定有f(x1)≠f(x2);③f(x)在(0,+∞)是增函数;④若规定f1(x)=f(x),fn+1(x)=f[fn(x)],则对任意n∈N*恒成立,
上述结论中正确的个数有________个.

网友回答

4
解析分析:根据题意,以此分析命题:①函数f(x)的值域为(-1,1),可由绝对值不等式的性质证明得;②若x1≠x2,则一定有f(x1)≠f(x2),可根据函数的解析式判断出其是一个增函数,;③与②的判断方法一样;④由其形式知,此是一个与自然数有关的命题,故采用数学归纳法进行证明,即可得
以上问题属网友观点,不代表本站立场,仅供参考!