已知f(x)的定义域为R,且对于任意的x∈R,都有f(-x)=-f(x),f(x+2)=f(x),则f(2010)=A.2011B.2012C.0D.2

发布时间:2020-07-31 13:23:39

已知f(x)的定义域为R,且对于任意的x∈R,都有f(-x)=-f(x),f(x+2)=f(x),则f(2010)=A.2011B.2012C.0D.2

网友回答

C
解析分析:由f(x)的定义域为R,且对于任意的x∈R,都有f(-x)=-f(x),可得f(x)为奇函数,f(x+2)=f(x),利用其周期性即可求得f(2010).

解答:∵f(x)的定义域为R,且对于任意的x∈R,都有f(-x)=-f(x),∴f(x)为奇函数,∵f(x+2)=f(x),∴其周期T=2,∴f(2010)=f(0).∵f(x)是定义域为R的奇函数,∴f(0)=0.故选C.

点评:本题考查函数的周期性与奇偶性,关键在于确定其周期并利用奇函数的性质解决,属于基础题.
以上问题属网友观点,不代表本站立场,仅供参考!