解答题已知关于x的一元二次函数f(x)=ax2-4bx+1
(1)设集合P={-1,1,2,3,4,5}和Q={-2,-1,1,2,3,4,},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域内的随机点,求函数y=f(x)在[1,+∞)上是增函数的概率.
网友回答
解:(1)由题意可得a>0,且?≤1,所有的取法共有6×6=36 种.
当a=1 时,b 只能取-2,-1这两个值.当a=2 时,b 只能取-2,-1,1 这三个值.
当a=3 时,b 只能取-2,-1,1 这三个值.当a=4 时,b 只能取-2,-1,1,2 这四个值.
当a=5 时,b 只能取-2,-1,1,2 这四个值.
故满足函数y=f(x)在[1,+∞)上是增函数的取法有 2+3+3+4+4=16种,
故所求事件的概率为 =,故