已知F1,F2分别是双曲线的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围

发布时间:2020-08-01 03:27:58

已知F1,F2分别是双曲线的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是A.B.C.D.(2,+∞)

网友回答

D

解析分析:根据斜率与平行的关系即可得出过焦点F2的直线,与另一条渐近线联立即可得到交点M的坐标,再利用点M在以线段F1F2为直径的圆外和离心率的计算公式即可得出.

解答:如图所示,过点F2(c,0)且与渐近线平行的直线为,与另一条渐近线联立解得,即点M.∴|OM|==.∵点M在以线段F1F2为直径的圆外,∴|OM|>c,∴,解得.∴双曲线离心率e=.故双曲线离心率的取值范围是(2,+∞).故选D.

点评:熟练掌握平行线与向量的关系、双曲线的渐近线、两点间的距离计算公式、离心率的计算公式、点与圆的位置关系是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!