设函数f(x)=|2x+1|-|x-4|.(1)解不等式f(x)>0;(2)若f(x)+3|x-4|>m对一切实数x均成立,求m的取值范围.

发布时间:2020-08-01 02:13:19

设函数f(x)=|2x+1|-|x-4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x-4|>m对一切实数x均成立,求m的取值范围.

网友回答

解:(1)当x≥4时f(x)=2x+1-(x-4)=x+5>0得 x>-5,所以,x≥4时,不等式成立.
当时,f(x)=2x+1+x-4=3x-3>0,得x>1,所以,1<x<4时,不等式成立.
当时,f(x)=-x-5>0,得x<-5,所以,x<-5成立
综上,原不等式的解集为:{x|x>1或x<-5}.
(2)f(x)+3|x-4|=|2x+1|+2|x-4|≥|2x+1-(2x-8)|=9,当,
所以,f(x)+3|x-4|的最小值为9,故 m<9.

解析分析:(1)分类讨论,当x≥4时,当时,当时,分别求出不等式的解集,再把解集取交集.(2)利用绝对值的性质,求出f(x)+3|x-4|的最小值为9,故m<9.

点评:本题考查绝对值不等式的解法,求函数的最小值的方法,绝对值不等式的性质,体现了分类讨论的数学思想.
以上问题属网友观点,不代表本站立场,仅供参考!