若函数f(x)=logax(0<a<1)在区间[a,2a]上的最大值是最小值的3倍,则a等于A.B.C.D.

发布时间:2020-08-01 03:08:14

若函数f(x)=logax(0<a<1)在区间[a,2a]上的最大值是最小值的3倍,则a等于A.B.C.D.

网友回答

A

解析分析:由函数f(x)=logax(0<a<1)不难判断函数在(0,+∞)为减函数,则在区间[a,2a]上的最大值是最小值分别为f(a)与f(2a),结合最大值是最小值的3倍,可以构造一个关于a的方程,解方程即可求出a值.

解答:∵0<a<1,∴f(x)=logax是减函数.∴logaa=3?loga2a.∴loga2a=.∴1+loga2=.∴loga2=-.∴a=.故选A

点评:函数y=ax和函数y=logax,在底数a>1时,指数函数和对数函数在其定义域上均为增函数,当底数0<a<1时,指数函数和对数函数在其定义域上均为减函数,而f(-x)与f(x)的图象关于Y轴对称,其单调性相反,故函数y=a-x和函数y=loga(-x),在底数a>1时,指数函数和对数函数在其定义域上均为减函数,当底数0<a<1时,指数函数和对数函数在其定义域上均为增函数.
以上问题属网友观点,不代表本站立场,仅供参考!