正方体ABCD-A1B1C1D1的棱长为1,点M在AB上,且AM=,点P是平面ABCD上的动点,且动点P到直线A1D1的距离与动点P到点M的距离的平方差为1,则动点的轨迹是A.圆B.抛物线C.双曲线D.直线
网友回答
B
解析分析:作PQ⊥AD,作QR⊥D1A1,PR即为点P到直线A1D1的距离,由勾股定理得 PR2-PQ2=RQ2=1,又已知PR2-PM2=1,PM=PQ,即P到点M的距离等于P到AD的距离.
解答:解:如图所示:正方体ABCD-A1B1C1D1? 中,作PQ⊥AD,Q为垂足,则PQ⊥面ADD1A1,过点Q作QR⊥D1A1,则D1A1⊥面PQR,PR即为点P到直线A1D1的距离,由题意可得 PR2-PQ2=RQ2=1.又已知 PR2-PM2=1,∴PM=PQ,即P到点M的距离等于P到AD的距离,根据抛物线的定义可得,点P的轨迹是抛物线,故选 B.
点评:本题考查抛物线的定义,求点的轨迹方程的方法,体现了数形结合的数学思想,得到PM=PQ是解题的关键.