已知数列{an}的各项均为正整数,其前n项和为Sn.若且S3=29,则a1=________;S3n=________.

发布时间:2020-07-31 09:15:40

已知数列{an}的各项均为正整数,其前n项和为Sn.若且S3=29,则a1=________;S3n=________.

网友回答

5    7n+22
解析分析:通过对a1分4k,4k+1,4k+2,4k+3(k∈N*)讨论,及与已知条件,结合S3=29,即可求出a1;通过求出a1,a2,…,a9,知道:从a4开始数列{an}是一个周期为3的数列,进而即可得到S3n.

解答:(1)①若,则a2=2k,a3=k,∴S3=a1+a2+a3=7k=29,不是整数,舍去;②若a1=4k+1,则a2=3(4k+1)+1=12k+4,a3=6k+2,∴S3=a1+a2+a3=22k+7=29,解得k=1,∴a1=5.③若a1=4k+2,则,a3=3a2+1=3(2k+1)+1=6k+4,则S3=a1+a2+a3=12k+7=29,解得k=,应舍去;④若a1=4k+3,则a2=3(4k+3)+1=12k+10,,则S3=a1+a2+a3=22k+18=29,解得k=不是整数,舍去.综上可得:a1=5(2)∵a1=5,a2=16,a3=8,∴a4=4,a5=2,a6=1,a7=4,a8=2,a9=1….可以看到:从a4开始数列{an}是一个周期为3的数列,即an+3=an,(n≥4).因此,当n≥2时,S3n=29+7(n-1)=7n+22,当n=1时,上式也成立,故S3n=7n+22.

点评:数列掌握分类讨论的思想方法和数列的周期性是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!