已知数列{an},{bn}满足bn=an+1-an,其中n=1,2,3,…
(1)若a1=1,bn=n,求数列{an}的通项公式;
(2)若bn+1bn-1=bn(n≥2),且b1=1,b2=2.记cn=a6n-1(n≥1),求证:数列{cn}为等差数列.
网友回答
解:(1)当n≥2时,有
an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=a1+b1+b2+…+bn-1(4分)
=1+.(6分)
又因为a1=1也满足上式,所以数列{an}的通项为.(7分)
(2)由题设知:bn>0,对任意的n∈N+有
bn+2bn=bn+1,bn+1bn+3=bn+2得bn+3bn=1,
于是又bn+3bn+6=1,故bn+6=bn(9分)
∴b6n-5=b1=1,b6n-4=b2=2,
b6n-3=b3=2,b6n-2=b4=1,
,
∴cn+1-cn=a6n+5-a6n-1=b6n-1+b6n+b6n+1+b6n+2+b6n+3+b6n+4
=1+2+2+1++=7(n≥1),
所以数列{cn}为等差数列.(16分)
解析分析:(1)an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=a1+b1+b2+…+bn-1=1+.由此能求出数列{an}的通项.(2)由题设知:bn>0,对任意的n∈N+有bn+2bn=bn+1,bn+1bn+3=bn+2得bn+3bn=1,于是又bn+3bn+6=1,故bn+6=bn,b6n-5=b1=1,b6n-4=b2=2,由此能够证明数列{cn}为等差数列.
点评:第(1)题考查数列的通项公式,解题时要注意累加法的合理运用,第(2)题考查等差数列的证明,解题时要注意合理地进行等价转化.