设正数数列{an}的前n项和是bn,数列{bn}的前n项之积是cn,且bn+cn=1(n∈N*),则的前10项之和等于________.
网友回答
440
解析分析:由题意可得,,由bn+cn=1可得bn+1=bn+1(bn+cn)=bn+1bn+bn+1Cn=bn+1bn+cn+1=bnbn+1+1-bn+1即2bn+1-bnbn+1-1=0,则bn+1-1=bn+1(bn-1)=(bn-1)(bn+1-1+1)=(bn-1)(bn+1-1)+(bn-1),从而可得 ,由等差数列的通项公式可得,可求 ,利用递推公式an=bn-bn-1可求an
解答:由题意可得,bn+cn=1∴bn+1=bn+1(bn+cn)=bn+1bn+bn+1Cn=bn+1bn+cn+1=bnbn+1+1-bn+1∴2bn+1-bnbn+1-1=0∴bn+1(2-bn)=1∴0<bn<2若bn+1=1则bn=1,bn-1=bn-2=…=b1=1与 矛盾∴bn+1≠1∴bn+1-1=bn+1(bn-1)=(bn-1)(bn+1-1+1)=(bn-1)(bn+1-1)+(bn-1)∴∴且 ∴是以-2为首项,以-1为公差的等差数列由等差数列的通项公式可得,=-n-1∴∴an=bn-bn-1==∴所以的前10项之和等于12+22+…+102+(1+2+3+…+10)=440故