设A、B是函数y=log2x图象上两点,其横坐标分别为a和a+4,直线l:x=a+2与函数y=log2x图象交于点C,与直线AB交于点D.
(1)求点D的坐标.(2)当△ABC的面积大于1时,求实数a的取值范围.
网友回答
解(Ⅰ)易知D为线段AB的中点,因A(a,log2a),B(a+4,log2(a+4)),
所以由中点公式得D(a+2,log2).
(Ⅱ)S△ABC=S梯形AA′CC′+S梯形CC′B′B-S梯形AA′B′B═log2,
其中A′,B′,C′为A,B,C在x轴上的射影.
由S△ABC=log2>1,得0<a<2-2.
解析分析:(1)、由题设条件可知D为线段AB的中点,所以先求出A、B两点的坐标,由中点公式可以求出得D点坐标.(2)、S△ABC=S梯形AA′CC′+S梯形CC′B′B-S梯形AA′B′B═log2,再由△ABC的面积大于1可以求出实数a的取值范围.
点评:本题考查中点坐标公式、对数性质和面积的求法,解题中要恰当地选取相关公式.