对于连续函数f(x)和g(x),函数|f(x)-g(x)|在闭区间[a,b]上的最大值称为f(x)与g(x)在闭区间[a,b]上的“绝对差”,记为(f(x),g(x)

发布时间:2020-08-01 01:51:21

对于连续函数f(x)和g(x),函数|f(x)-g(x)|在闭区间[a,b]上的最大值称为f(x)与g(x)在闭区间[a,b]上的“绝对差”,记为(f(x),g(x)),则(,-x)=________.

网友回答



解析分析:根据题意设h(x)=-+x,x∈[1,4]可求得h′(x).令h′(x)>0解得1<x<2,令h′(x)<0解得2<x<4.所以h(x)在[1,4]上先增后减.所以h(x)的最值在x=1或x=2或x=4处取得,进而求出函数h(x)的最值即可得到
以上问题属网友观点,不代表本站立场,仅供参考!