经市场调查,某超市的一种商品在过去的一个月内(以30天计),销售价格(元)与时间t(天)的函数关系近似满足,销售量(件)与时间t(天)的函数关系近似满足g(t)=125-|t-25|.
(1)试写出该商品的日销售金额w(t)关于时间t(1≤t≤30,t∈N)的函数表达式;
(2)求该商品的日销售金额w(t)的最大值与最小值.
网友回答
解:(1)由题意,得
=
(2)①当1≤t<25时,因为,
所以当t=10时,w(t)有最小值12100;
当t=1时,w(t)有最大值20200;
②当25≤t≤30时,∵在[25,30]上递减,
∴当t=30时,w(t)有最小值12400
∵12100<12400,
∴当t=10时,
该商品的日销售金额w(t)取得最小值为12100.
最大值为20200.
解析分析:(1)函数关系近似满足,、g(t)=125-|t-25|,即可得到商品的日销售金额w(t)关于时间t(1≤t≤30,t∈N)的函数关系式;(2)由函数关系近似满足,判断函数的单调性判断出函数的最值,即该商品的日销售金额w(t)的最值.
点评:函数的实际应用题,我们要经过析题→建模→解模→还原四个过程,在建模时要注意实际情况对自变量x取值范围的限制,解模时也要实际问题实际考虑.将实际的最大(小)化问题,利用函数模型,转化为求函数的最大(小)是最优化问题中,最常见的思路之一.