曲线y=x2的切线L与直线x+4y-8=0垂直,则切线L方程是A.4x+y+4=0B.x-4y-4=0C.4x-y-12=0D.4x-y-4=0

发布时间:2020-07-31 09:17:17

曲线y=x2的切线L与直线x+4y-8=0垂直,则切线L方程是A.4x+y+4=0B.x-4y-4=0C.4x-y-12=0D.4x-y-4=0

网友回答

D
解析分析:根据已知条件设出切线方程,然后与抛物线联立方程组,使方程只有一解,即可求解切线方程.

解答:根据题意可设切线方程为4x-y+m=0联立方程组得x2-4x-m=0△=16+4m=0,求得m=-4,∴则切线l的方程为4x-y-4=0,故选D.

点评:本题主要考查了两条直线垂直的判定,以及利用导数研究曲线上某点切线方程,属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!