已知△ABC是等腰直角三角形,AB=AC=a,AD是斜边BC上的高,以AD为折痕使∠BDC成直角.在折起后形成的三棱锥A-BCD中,有如下三个结论:①直线AD⊥平面B

发布时间:2020-07-31 09:17:04

已知△ABC是等腰直角三角形,AB=AC=a,AD是斜边BC上的高,以AD为折痕使∠BDC成直角.在折起后形成的三棱锥A-BCD中,有如下三个结论:①直线AD⊥平面BCD;②侧面ABC是等边三角形;③三棱锥A-BCD的体积是.其中正确结论的序号是________.(写出全部正确结论的序号)

网友回答

①、②、③
解析分析:由△ABC是等腰直角三角形,AB=AC=a,AD是斜边BC上的高,折起后,根据线面垂直的判定定理可判断①的真假;由等腰三角形的判定,可知②的真假;根据棱锥体积公式求出三棱锥A-BCD的体积可以判断③的真假.进而得到
以上问题属网友观点,不代表本站立场,仅供参考!