已知四棱锥P-ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC与BD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2,E、F分别是AB、AP的中

发布时间:2020-08-01 03:17:24

已知四棱锥P-ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC与BD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2,E、F分别是AB、AP的中点.
(1)求证:AC⊥EF;
(2)求二面角F-OE-A的余弦值.

网友回答

(1)证明:由ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC与BD交于O,可知:△OAB是等腰直角三角形,
∵AB=2CD=2,E是AB的中点,∴OE=EA=EB=,可得OA=OB=2.
∵PO⊥底面ABCD,∴PO⊥OA,PO⊥OB.又OA⊥OB.
∴可以建立如图所示的空间直角坐标系.
则O(0,0,0),A(2,0,0),B(0,2,0),P(0,0,2),E(1,1,0),F(1,0,1).
∴,.
∴,∴EF⊥AO,即EF⊥AC.
(2)解:由(1)可知:,.
设平面OEF的法向量为,
则,得,令x=1,则y=z=-1.
∴.
∵PO⊥平面OAE,∴可取作为平面OAE的法向量.
∴===.
由图可知:二面角F-OE-A的平面角是锐角θ.
因此,.

解析分析:(1)通过建立空间直角坐标系,利用EF与AO的方向向量的数量积等于0,即可证明垂直;(2)利用两个平面的法向量的夹角即可得到二面角的余弦值.

点评:通过建立空间直角坐标系,利用EF与AO的方向向量的数量积等于0证明垂直;利用两个平面的法向量的夹角得到二面角的方法必须熟练掌握.
以上问题属网友观点,不代表本站立场,仅供参考!