设复数z=(a2-4sin2θ)+(1+2cosθ)i,其中i为虚数单位,a为实数,θ∈(0,π).若z是方程x2-2x+5=0的一个根,且z在复平面内所对应的点在第

发布时间:2020-08-01 03:16:59

设复数z=(a2-4sin2θ)+(1+2cosθ)i,其中i为虚数单位,a为实数,θ∈(0,π).若z是方程x2-2x+5=0的一个根,且z在复平面内所对应的点在第一象限,求θ与a的值.

网友回答

解:方程 x2-2x+5=0 的根为 x=1±2i,因为z在复平面内所对应的点在第一象限,所以 z=1+2i,
所以,,解得 cosθ=,因为 θ∈(0,π),所以,θ=.
所以,a2=1+4sin2θ=1+4×=4,a=±2.
综上,θ=,a=±2.

解析分析:解实系数一元二次方程求得z,得到? ,解方程组求得 θ 和a的值.

点评:本题考查实系数一元二次方程的解法,复数与复平面内对应点之间的关系,根据三角函数值求角,得到,是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!