已知向量,,设函数.(Ⅰ)求f(x)的最小正周期及单调递减区间;(Ⅱ)求f(x)在上的最小值及取得最小值时的x值.

发布时间:2020-08-01 03:09:41

已知向量,,设函数.
(Ⅰ)求f(x)的最小正周期及单调递减区间;
(Ⅱ)求f(x)在上的最小值及取得最小值时的x值.

网友回答

解:(Ⅰ)由=

=



∴函数f(x)的单调减区间为
(Ⅱ)∵

从而
∴f(x)在上的最小值为-1,此时x=0.

解析分析:通过向量计算,求出,化为一个角的一个三角函数的形式,(Ⅰ)直接求f(x)的最小正周期,根据正弦函数的单调递减区间,求出f(x)的单调减区间.(Ⅱ)在上确定,然后求f(x)的最小值及取得最小值时的x值.

点评:本题考查三角函数的周期性及其求法,平面向量数量积的运算,正弦函数的单调性,三角函数的最值,考查计算能力,是中档题.
以上问题属网友观点,不代表本站立场,仅供参考!