已知F1、F2是椭圆的两个焦点,P是椭圆上一点,∠F1PF2=90°,则椭圆离心率的取值范围是________.
网友回答
解析分析:根据题意,点P即在已知椭圆上,又在以F1F2为直径的圆上.因此以F1F2为直径的圆与椭圆有公式点,所以该圆的半径c大于或等于短半轴b的长度,由此建立关于a、c的不等式,即可求得椭圆离心率的取值范围.
解答:解∵P点满足∠F1PF2=90°,∴点P在以F1F2为直径的圆上又∵P是椭圆上一点,∴以F1F2为直径的圆与椭圆有公共点,∵F1、F2是椭圆的焦点∴以F1F2为直径的圆的半径r满足:r=c≥b,两边平方,得c2≥b2即c2≥a2-c2?2c2≥a2两边都除以ea2,得2e2≥1,∴e≥,结合0<e<1,∴≤e<1,即椭圆离心率的取值范围是[,1).故