已知f(x+1)是定义域为R的偶函数,且x≥1时,,若a∈(1,2),则下列不正确的是A.B.f(a2+1)<f(-3)C.|f(a)|<|f(0)|D.f(a2-a

发布时间:2020-08-01 01:44:40

已知f(x+1)是定义域为R的偶函数,且x≥1时,,若a∈(1,2),则下列不正确的是A.B.f(a2+1)<f(-3)C.|f(a)|<|f(0)|D.f(a2-a+1)<f(a)

网友回答

B

解析分析:根据条件得到对称性和函数的单调性,然后画出满足条件的图象,结合图象进行解题即可.

解答:∵f(x+1)是定义域为R的偶函数∴f(x)关于x=1对称即f(x+1)=f(-x+1)∵x≥1时,,∴f(x)在[1,+∞)上单调递减根据f(x)关于x=1对称可知f(x)在(-∞,1)上单调递增∴f(1)=,f(2)=-结合图象可知|f(a)|<|f(0)|∵∴∵a2-a+1>a>1∴f(a2-a+1)<f(a)∵1<a2+1<5∴f(a2+1)>f(5)=f(-3)故选项B不正确故选B.

点评:本题主要考查了抽象函数的应用,同时考查了函数奇偶性和单调性,同时考查了数形结合的方法,属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!