如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AD=2,E、F、G分别为PC、PD、BC的中点.
(I)求证:PA∥平面EFG;
(II)求三棱锥P-EFG的体积.
网友回答
解(I):如图,取AD的中点H,连接GH,FH,
∵E,F分别为PC,PD的中点,∴EF∥CD.
∵G,H分别为BC,AD的中点,
∴GH∥CD.∴EF∥GH.∴E,F,H,G四点共面.(4分)
∵F,H分别为DP,DA的中点,
∴PA∥FH.
∵PA不在平面EFG,FH?平面EFG,
∴PA∥平面EFG.(6分)
(II)解:∵PD⊥平面ABCD,GC?平面ABCD,
∴GC⊥PD.
∵ABCD为正方形,∴GC⊥CD.∵PD∩CD=D,
∴GC⊥平面PCD.(8分)
∵PE=PD=1,EF=CD=1,
∴.
∵GC==1,
∴(12分)
解析分析:(I)取AD的中点H,连接GH,FH,说明PA不在平面EFG,FH在平面EFG,证明PA平行平面EFG内的直线FH即可证明PA∥平面EFG;(II)利用转化法,求出底面面积和高,求三棱锥P-EFG的体积.
点评:本题考查直线与平面平行的判定,棱柱、棱锥、棱台的体积,考查计算能力,是中档题.