数列{an}是首项a1=4的等比数列,且S3,S2,S4成等差数列,(1)求数列{an}的通项公式;(2)若bn=log2|an|,设Tn为数列的前n项和,若Tn≤λ

发布时间:2020-07-31 14:39:37

数列{an}是首项a1=4的等比数列,且S3,S2,S4成等差数列,
(1)求数列{an}的通项公式;
(2)若bn=log2|an|,设Tn为数列的前n项和,若Tn≤λbn+1对一切n∈N*恒成立,求实数λ的最小值.

网友回答

解:(1)∵S3,S2,S4成等差数列
∴2S2=S3+S4即2(a1+a2)=2(a1+a2+a3)+a4
所以a4=-2a3
∴q=-2
an=a1qn-1=(-2)n+1
(2)bn=log2|an|=log22n+1=n+1
=
Tn=(-)+(-)+…+()=-
λ≥==×
因为n+≥4,所以×≤
所以λ最小值为
解析分析:(1)根据S3,S2,S4成等差数列建立等式关系,然后可求出公比q,根据等比数列的性质求出通项公式即可;(2)先求出数列bn的通项公式,然后利用裂项求和法求出数列的前n项和Tn,将λ分离出来得λ≥,利用基本不等式求出不等式右侧的最大值即可求出所求.

点评:本题主要考查了恒成立问题,以及等比数列的通项和裂项求和法,属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!