已知双曲线的左焦点在抛物线y2=8x的准线上,且点F到双曲线的渐近线的距离为1,则双曲线的方程为
A.x2-y2=2
B.
C.x2-y2=3
D.
网友回答
B解析分析:由抛物线标准方程易得其准线方程为x=-2,而通过双曲线的标准方程可见其焦点在x轴上,则双曲线的左焦点为(-2,0),此时由双曲线的性质a2+b2=c2可得a、b的一个方程;再根据焦点在x轴上的双曲线的渐近线方程为y=±x,可得a、b的另一个方程.那么只需解a、b的方程组,问题即可解决.解答:因为抛物线y2=8x的准线方程为x=-2,则由题意知,点F(-2,0)是双曲线的左焦点,所以a2+b2=c2=4,又双曲线的一条渐近线方程是bx-ay=0,所以点F到双曲线的渐近线的距离d=,∴=1,∴a2=3b2,解得a2=3,b2=1,所以双曲线的方程为 .故选B.点评:本题考查圆锥曲线的共同特征,主要考查了双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a的值,是解题的关键.