已知集合M={x|x=3n,n=1,2,3,4},N={x|x=3k,k=1,2,3},则满足:(M∩N)?S?(M∪N)的集合S有
A.6
B.7
C.8
D.9
网友回答
B解析分析:集合M={x|x=3n,n=1,2,3,4}={3,6,9,12},N={x|x=3k,k=1,2,3}={3,9,27},故M∩N={3,9},M∪N={3,6,9,12,27},由(M∩N)?S?(M∪N),能求出满足条件的集合S的个数.解答:∵集合M={x|x=3n,n=1,2,3,4}={3,6,9,12},N={x|x=3k,k=1,2,3}={3,9,27},∴M∩N={3,9},M∪N={3,6,9,12,27},∵(M∩N)?S?(M∪N),∴满足条件的集合S可能为:{3,6,9},{3,9,12},{3,9,27},{3,6,9,12},{3,6,9,27},{3,9,12,27},{3,6,9,12,27},共7种可能.故选B.点评:本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.