解答题求出下列函数的值域:
;
.
网友回答
解:∵,故函数的定义域为(-∞,1].
令=t,可得 x=1-t2≤1,此时t≥0,函数y=2(1-t2)+4t=4-2(t-1)2≤4,
故函数的值域为(-∞,4].
由函数?可得 x2=≥0,即 ,即 ,
解得-3≤y<2,故函数?的值域为[-3,2).解析分析:对于第一个函数,先求出它的定义域,换元后化为关于t的二次函数,利用二次函数的性质以及t的范围求出它的值域.对于第二个函数,由其解析式可得x2=≥0,解此分使不等式,求得y的范围,即为函数的值域.点评:本题主要考查函数的定义域和值域的求法,分式不等式的解法,体现了转化的数学思想,属于基础题.