已知圆O的圆心在y轴上,截直线l1:3x+4y+3=0所得弦长为8,且与直线l2:3x-4y+37=0相切,求圆O的方程.

发布时间:2020-07-31 17:55:49

已知圆O的圆心在y轴上,截直线l1:3x+4y+3=0所得弦长为8,且与直线l2:3x-4y+37=0相切,求圆O的方程.

网友回答

解:设圆心M(0,b),半径R.圆M交L1于AB两点.AB=8,
做MN⊥L1,交L1于N点.则N平分AB. AN=4,
连AM,则AM=R.?
|MN|==,
|AN|2+|MN|2=R2=16+,
点M到直线L2距离d=R(圆M与直线L2相切),
d2=R2=,
∴16+,
16×25=(37-3b+4b+3)(37-4b-4b-3),
8b=34-=24,
b=3,
R2==25,
∴圆M的方程为:x2+(y-3)2=25.

解析分析:设出圆心与半径,利用圆截直线的弦长、半径、弦心距满足勾股定理,以及圆与直线l2相切,列出方程求出圆的圆心与半径,即可得到圆的方程.

点评:本题是中档题,考查直线与圆的位置关系,注意圆心坐标的设法,点到直线的距离公式的应用,考查计算能力.
以上问题属网友观点,不代表本站立场,仅供参考!