已知向已知角A、B、C为△ABC的内角,其对边分别为a、b、c,若向量=(-cos,sin),=(cos,sin),a=2,且?=,△ABC的面积S=,求b+c的值.

发布时间:2020-07-31 13:46:21

已知向已知角A、B、C为△ABC的内角,其对边分别为a、b、c,若向量=(-cos,sin),=(cos,sin),a=2,且?=,△ABC的面积S=,求b+c的值.

网友回答

解:∵,,且,
,即,
又0<A<π,所以0<<,则=,
∴,
∵=,
∴bc=4,
由余弦定理,a2=b2+c2-2bccosA=b2+c2+bc=12,
∴(b+c)2=16,故b+c=4.
解析分析:根据平面向量数量积的运算法则化简,然后利用同角三角函数间的基本关系得到cos的值,根据A的范围得到的范围,利用特殊角的三角函数值即可求出A的度数,利用三角形的面积公式表示出三角形的面积,让其等于,即可求出ab的值,然后利用余弦定理表示出一个关系式,把ab的值代入即可求出b+c的值.

点评:此题考查学生灵活运用余弦定理及平面向量的数量积运算法则化简求值,是一道综合题.
以上问题属网友观点,不代表本站立场,仅供参考!