已知数列{an},{bn}中,a1=b1=1,且当n≥2时,an-nan-1=0,.记n的阶乘n(n-1)(n-2)…3?2?1≈n!(1)求数列{an}的通项公式;

发布时间:2020-08-01 01:49:17

已知数列{an},{bn}中,a1=b1=1,且当n≥2时,an-nan-1=0,.记n的阶乘n(n-1)(n-2)…3?2?1≈n!
(1)求数列{an}的通项公式;
(2)求证:数列为等差数列;
(3)若,求{cn}的前n项和.

网友回答

(1)解:∵an-nan-1=0(n≥2),a1=1,
∴an=nan-1=n(n-1)an-2=n(n-1)(n-2)an-3=…
=n(n-1)(n-2)…3?2?1=n!
又a1=1=1!,∴an=n!
(2)证明:由,两边同时除以2n得:
,即.
∴数列{}是以为首项,公差为的等差数列,
则,故.
(3)解:因为,

记An=
=
=.
记{}的前n项和为Bn.
则?①
∴?②
由②-①得:
=.
∴Sn=c1+c2+c3+…+cn=.
所以数列{cn}的前n项和为.

解析分析:(1)把递推式an-nan-1=0变形后进行循环,可以得到an=n(n-1)(n-2)…3?2?1=n!,验证a1成立,则数列{an}的通项公式可求;(2)把给出的递推式两边同时除以2n,移向整理即可证得数列为等差数列;(3)把数列{an}的通项代入,把数列{bn}的通项代入,利用裂项相消和错位相减法分别求出数列{}和{}的和后直接作和即可.

点评:本题考查了等差关系的确定,考查了等差数列和等比数列通项公式的求法,考查了利用裂项相消和错位相减法求数列的前n项和,是中档题.
以上问题属网友观点,不代表本站立场,仅供参考!