f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f'(x)g(x)+f(x)g'(x)<0且f(-1)=0则不等式f(x)g(x)<0的解集为A.(-1,0)∪(1,+∞)B.(-1,0)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-∞,-1)∪(0,1)
网友回答
A
解析分析:构造函数h(x)=f(x)g(x),由已知得到当x<0时,h′(x)<0,所以函数y=h(x)在(-∞,0)单调递减,又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,得到函数y=h(x)为R上的奇函数,得到函数y=h(x)在(0,+∞)单调递减,画出函数h(x)的草图,结合图象得到不等式的解集.
解答:解:设h(x)=f(x)g(x),因为当x<0时,f'(x)g(x)+f(x)g'(x)<0,所以当x<0时,h′(x)<0,所以函数y=h(x)在(-∞,0)单调递减,又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以函数y=h(x)为R上的奇函数,所以函数y=h(x)在(0,+∞)单调递减,因为f(-1)=0,所以函数y=h(x)的大致图象如下:所以等式f(x)g(x)<0的解集为(-1,0)∪(1,+∞)故选A.
点评:本题考查导数的乘法法则、导数的符号与函数单调性的关系;奇函数的单调性在对称区间上一致,属于基础题.