在直角坐标平面上有一点列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,对一切正整数n,点Pn在函数的图象上,且Pn的横坐标构成以为首项,-1为公

发布时间:2020-07-31 09:42:36

在直角坐标平面上有一点列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,对一切正整数n,点Pn在函数的图象上,且Pn的横坐标构成以为首项,-1为公差的等差数列{xn}.
(1)求点Pn的坐标;
(2)设抛物线列C1,C2,C3,…,Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,n2+1).记与抛物线Cn相切于点Dn的直线的斜率为kn,求;
(3)设S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差数列{an}的任一项an∈S∩T,其中a1是S∩T中的最大数,-265<a10<-125,求数列{an}的通项公式.

网友回答

解:(1)∵,
∴.
∴.
(2)∵Cn的对称轴垂直于x轴,且顶点为Pn,
∴设Cn的方程为.
把Dn(0,n2+1)代入上式,得a=1,
∴Cn的方程为y=x2+(2n+3)x+n2+1.
∵kn=y'|x=0=2n+3,
∴,
∴=
=.
(3)T={y|y=-(12n+5),n∈N*}={y|y=-2(6n+1)-3,n∈N*},
∴S∩T=T,T中最大数a1=-17.
设{an}公差为d,则a10=-17+9d∈(-265,-125.)由此得.
又∵an∈T.
∴d=-12m(m∈N*)
∴d=-24,
∴an=7-24n(n∈N*,n≥2).
解析分析:(1)根据等差数列的通项公式可求得xn,进而代入直线方程求得yn,则点P的坐标可得.(2)先设出Cn的方程,把D点代入求得a,进而对函数进行求得求得切线的斜率,即kn的表达式,进而用裂项法求得(3)根据两集合的特点可知S∩T=T,进而推断出T中最大数a1=-17.设{an}公差为d,则根据a10的范围求得d的范围,进而根据d=-12m求得d的值.则数列{an}的通项公式可得.

点评:本题主要考查了数列求和问题.考查了用裂项法求和的方法运用和对数列基础知识的综合运用.
以上问题属网友观点,不代表本站立场,仅供参考!