如图,在平行四边形OABC中,点O是原点,点A和点C的坐标分别是(3,0)、(1,3),点D是线段AB上的动点.(1)求AB所在直线的一般式方程;(2)当D在线段AB

发布时间:2020-07-31 13:47:35

如图,在平行四边形OABC中,点O是原点,点A和点C的坐标分别是(3,0)、(1,3),点D是线段AB上的动点.
(1)求AB所在直线的一般式方程;
(2)当D在线段AB上运动时,求线段CD的中点M的轨迹方程.

网友回答

(本小题满分10分)
解:(1)∵AB∥OC,∴AD所在直线的斜率为:KAB=KOC==3.
∴AB所在直线方程是y-0=3(x-3),即3x-y-9=0.
(2):设点M的坐标是(x,y),点D的坐标是(x0,y0),
由平行四边形的性质得点B的坐标是(4,6),
∵M是线段CD的中点,∴x=,y=,
于是有x0=2x-1,y0=2y-3,
∵点D在线段AB上运动,
∴3x0-y0-9=0,(3≤x0≤4),
∴3(2x-1)-(2y-3)-9=0
即6x-2y-9=0,(2≤x≤).
解析分析:(1)求出AB 所在直线的向量,然后求出AB所在的直线方程;(2)设点M的坐标是(x,y),点D的坐标是(x0,y0),利用平行四边形,推出M与D坐标关系,利用当D在线段AB上运动,求线段CD的中点M的轨迹方程.

点评:本题考查直线方程的求法,与直线有关的动点的轨迹方程的求法,考查转化思想与计算能力.
以上问题属网友观点,不代表本站立场,仅供参考!