题库大全
查看
题库大全
题库
考试培训
财会类题库
网络知识
作业答案
作业习题
蚂蚁庄园答案
当前位置:
题库大全
作业答案
在△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,;(1)设,求△ABC的面积S△ABC;(2)求的值.
在△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,;(1)设,求△ABC的面积S△ABC;(2)求的值.
发布时间:2020-08-04 18:39:23
在△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,;
(1)设,求△ABC的面积S△ABC;
(2)求的值.
网友回答
解:由已知有b2=ac,,于是.
(1)∵,即,且,∴ca=2
∴.
(2)由b2=ac及正弦定理得sin2B=sinAsinC.
于是
=.
解析分析:
(1)先利用同角三角函数基本关系求得sinB的值,根据求得ac的值,然后代入三角形面积公式求得
以上问题属网友观点,不代表本站立场,仅供参考!
上一条:
设抛物线y2=2x的焦点为F,以为圆心,PF长为半径作一圆,与抛物线在x轴上方交于M,N,则|MF|+|NF|的值为A.8B.18C.D.4
下一条:
用五点法作出函数在一个周期上的图象.
资讯推荐
当x取什么值时,二次根式有意义A.x>B.x<C.x≥D.x≤
先化简,再选一个你喜欢的数代入求值?
已知x+y=2011,x?y=4022,则代数式的值是A.B.C.1D.2
如图,⊙O的弦AB⊥AC,AB=AC,OM⊥AB,ON⊥AC,垂足分别为M、N,若AB=2,则⊙O的半径为________.
计算:(1);???????(2)计算:(3)解方程:x2-2x-3=0.
下列式子总有意义的是A.B.C.D.
已知:,求:|x-1|-|x-3|的最大值和最小值.
若干本书分给某班同学,每人6本则余18本,每人7本则少24本.设该班有学生x人,或设共有图书y本,分别得方程A.6x+18=7x-24与B.7x-24=6x+18与C
已知是三角形的三边,则下列三角形是直角三角形的是A.a=2,b=3,c=4B.a=,b=,c=2C.a=4,b=5,c=6D.a=,b=,c=3
正n边形的一个外角为60°,外接圆半径为4,则它的边长为A.4B.2C.4D.2
三角形的三边a,b,c满足,则三角形形状是A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形
如图,直线y=-x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是A.(4,2)B.(2,4)C.(,3)D.
如图,在等腰梯形AOBC中,AC∥OB,OA=BC.以O为原点,OB所在直线为x轴建立直角坐标系xoy,已知已知A(2,2),B(8,0).(1)直接写出点C的坐标,
若,则整数x的最大值是A.1B.2C.3D.4
如图,已知正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°.求证:(1)EF=BE+DF;(2).
过点(2,3)的正比例函数解析式是A.B.C.y=2x-1D.
在梯形ABCD中,AD∥BC,点E、F分别是边AB、CD的中点,AD=BC,,那么等于A.B.C.D.
如果-b是a的立方根(ab≠0),那么下列结论正确的是A.-b也是-a的立方根B.b是a的立方根C.b是-a的立方根D.以上结论均不正确
如图,在正四棱锥P-ABCD中,PA=AB=2.(1)求该正四棱锥的体积V;(2)设E为侧棱PB的中点,求异面直线AE与PC所成角θ的大小.
函数的图象是双曲线,在每一象限内,y随x增大而增大,则m的取值为A.B.±1C.1D.-1
△ABC中内角A,B,C的对边分别为a,b,c,向量=(2sinB,-),=(cos2B,2cos2-1)且∥.(Ⅰ)求锐角B的大小;(Ⅱ)如果b=2,求△ABC的面
已知对任意平面向量=(x,y),把绕其起点沿逆时针方向旋转θ角得到向量=(xcosθ-ysinθ,xsinθ+ycosθ),叫做把点B绕点A逆时针方向旋转θ角得到点P
化简(1);(2)已知,求的值.
(文科)锐角的值为A.B.C.D.
已知向量=(1,2),=(x,2),则向量+2与2-A.垂直的必要条件是x=-2B.垂直的充要条件是C.平行的充分条件是x=-2D.平行的充要条件是x=1
△ABC中,∠A为锐角是的A.充分非必要条件B.既非充分又非必要条件C.充分必要条件D.必要非充分条件
已知幂函数y=t(x)的图象过点(2,4),函数y=f(x)的图象可由y=t(x)的图象向左移动个单位并向下移动个单位得到.(1)求函数t(x)和f(x)的解析式;(
已知||=4,||=3,(2)=61,求:(1)向量与的夹角θ;(2)||
已知y=f(x)是周期为2π的函数,当x∈[0,2π)时,,则方程的解集为A.B.C.D.
已知椭圆的左焦点F为圆x2+y2+2x=0的圆心,且椭圆上的点到点F的距离最小值为.(I)求椭圆方程;(II)已知经过点F的动直线l与椭圆交于不同的两点A、B,点M(
返回顶部