已知映射f:A→B,其中A=B=R,对应法则f:x→y=-x2+2x,对于实数k

发布时间:2020-07-09 09:06:50

已知映射f:A→B,其中A=B=R,对应法则f:x→y=-x2+2x,对于实数k∈B在集合A中存在两个不同的原像,则k的取值范围是













A.k>1












B.k≤1











C.k<1











D.k≥1

网友回答

C解析分析:根据映射的意义知,对应法则f:x→y=-x2+2x,对于实数k∈B在集合A中存在两个不同的原像,这说明对于一个y的值,有两个x和它对应,根据二次函数的性质,得到结果.解答:∵对于实数k∈B在集合A中存在两个不同的原像,∴y=-x2+2x=-(x2-2x+1)+1≤1,当等于1时,有两个相同的x,不合题意,∴k<1,故选C.点评:本题考查映射的意义,考查二次函数的值域,是一个基础题,这种题目应该好好掌握,从每一年的高考卷来看,二次函数是每年必考的题目.
以上问题属网友观点,不代表本站立场,仅供参考!