已知函数的图象有公共点,且在该点处的切线相同.(I)用a表示b,并求b的最大值;(II)求证:f(x)≥g(x)(x>0)

发布时间:2020-07-31 18:58:39

已知函数的图象有公共点,且在该点处的切线相同.
(I)用a表示b,并求b的最大值;
(II)求证:f(x)≥g(x)(x>0)

网友回答

解:(I)设函数f(x)与函数g(x)的图象有公共点(x0,y0)

由题意:
由②得x0=a(其中x0=-3a舍去)
代入到①中得

考虑到
∴上单调递减,
故取得最大值.
(II)设

∴F(x)在(0,a]上单调递减,在[a,+∞)上单调递增,
故F(x)≥F(a)=f(a)-g(a)=f(x0)-g(x0)=0,
即f(x)≥g(x)
解析分析:(I)设出函数的公共点,对两个函数求导,根据两个函数在这个点上的切线相同,得到两个关系式,整理变化出b的函数式,求出最大值.(II)构造新函数,对两个函数做差,构造新函数,对新函数求导,得到函数在正数范围上的单调性,求出最小值,最小值等于0,得到不等式.

点评:本题考查导数在求最值的应用,本题解题的关键是构造新函数,根据新函数的性质,得到要求的结论,注意本题的运算不要出错.
以上问题属网友观点,不代表本站立场,仅供参考!