填空题已知函数在(2,+∞)上为增函数,则实数a的取值范围为________.
网友回答
1<a≤3解析分析:先讨论外层函数的单调性,发现外层函数只能为增函数,即a>1,再将问题转化为内层函数为增函数且内层函数大于零恒成立问题,列不等式组即可得a的取值范围解答:若0<a<1,y=logat在(0,+∞)上为减函数,则函数t=x2-ax+2在(2,+∞)上为减函数,这是不可能的,故a>1a>1时,y=logat在(0,+∞)上为增函数,则函数t=x2-ax+2在(2,+∞)上为增函数,且t>0在(2,+∞)上恒成立只需,解得a≤3∴1<a≤3故