已知二次函数y=f(x)的图象经过坐标原点,其导函数为f'(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式;
(2)设对所有n∈N*都成立的m的范围.
网友回答
解:(1)设二次函数f(x)=ax2+bx.
f'(x)=2ax+b,
∴2a=6b=-2.
∴f(x)=3x2-2x
(n,Sn)在y=3x2-2x上,
则Sn=3n2-2n.
又n≥2时an=Sn-Sn-1
=3n2-2n-3(n-1)2+2(n-1)
=6n-5
又n=1时a1=3-2=1=6×1-5符合,
∴an=6n-5.
(2)
Tn=b1+b2+…+bn
=
=
=
.
∴m>(7Tn)max
Tn+1-Tn=bn+1>0,
∴Tn随n增大而增大,
,
∴.
解析分析:(1)设二次函数f(x)=ax2+bx.f'(x)=2ax+b,由2a=6b=-2,知f(x)=3x2-2x,由(n,Sn)在y=3x2-2x上,知Sn=3n2-2n.由此能求出数列{an}的通项公式.(2)由,知Tn==,由.由此能求出所有n∈N*都成立的m的范围.
点评:本题考查数列与不等式的综合,综合性强,难度较大.易错点是基础知识不牢固,不会运用数列知识进行等价转化转化.解题时要认真审题,注意挖掘题设中的隐含条件.