设x,y均为正实数,且xy-x-y-8=0,则xy的最小值为________.

发布时间:2020-08-01 05:58:24

设x,y均为正实数,且xy-x-y-8=0,则xy的最小值为________.

网友回答

16

解析分析:将xy看成整体,对条件应用基本不等式,得到一个关于xy的不等关系,解之即得xy的最小值.

解答:由xy-x-y-8=0得x+y+8=xy.∴2+8≤x+y+8=xy.∴xy-2-8≥0,∴(+2)(-4 )≥0,∴≥4,即xy≥16,等号成立的条件是x=y.故xy的最小值是16.故
以上问题属网友观点,不代表本站立场,仅供参考!