填空题如图,直三棱柱ABC-A1B1C1中,AB=1,BC=2,AC=,AA1=3,M为线段BB1上的一动点,则当AM+MC1最小时,△AMC1的面积为________.
网友回答
解析分析:先将直三棱柱ABC-A1B1C1沿棱BB1展开成平面连接AC1,与BB1的交点即为满足AM+MC1最小时的点M,由此可以求得△AMC1的三边长,再由余弦定理求出其中一角,由面积公式求出面积解答:将直三棱柱ABC-A1B1C1沿棱BB1展开成平面连接AC1,与BB1的交点即为满足AM+MC1最小时的点M,由于AB=1,BC=2,AA1=3,再结合棱柱的性质,可得BM=AA1=1,故B1M=2由图形及棱柱的性质,可得AM=,AC1=,MC1=2cos∠AMC1==-故sin∠AMC1=△AMC1的面积为×××=故