填空题等差数列{an}的前n项和为Sn,公差d<0.若存在正整数m(m≥3),使得am=Sm,则当n>m(n∈N+)时,有an ________sn(填“>”、“<”、“=”)
网友回答
>解析分析:根据am=Sm,利用等差数列的前m项和的公式化简后,解得Sm-1=0,有因为公差d小于0,所以得到从am开始到an的各项都为负数,然后列举出Sn的各项,根据前m项和为0,以后的项都为负数,根据两负数比较大小的方法即可得到Sn<an.解答:由am=Sm=a1+a2+…+am-1+am=Sm-1+am,得到Sm-1=0,又d<0,得到am<0,an<0,且am到an所有项都小于0,则Sn=a1+a2+…+am-1+am+am+1+…+an=am+am+1+…+an<an.故