已知函数f(x)=2a(cos2x+sinxcosx)+b.(1)当a=1时,求f(x)的单调递增区间;(2)若a≠0,且时,f(x)的最大值为4,最小值为3,求a,

发布时间:2020-07-31 17:31:23

已知函数f(x)=2a(cos2x+sinxcosx)+b.
(1)当a=1时,求f(x)的单调递增区间;
(2)若a≠0,且时,f(x)的最大值为4,最小值为3,求a,b的值.

网友回答

解:(1)f(x)=2cos2x+2sinxcosx+b=cos2x+1+sin2x+b=(3分)
当f(x)递增时,有,
即:(6分)
(2)∵,∴(9分)
故当a>0时,,∴;(11分)
当a<0时,,∴.(13分)

解析分析:(1)a=1,利用二倍角公式、两角和的正弦函数化简函数的表达式,通过正弦函数的单调增区间求出函数的单调增区间.(2)利用二倍角公式、两角和的正弦函数化简函数的表达式为一个角的一个三角函数的形式,根据最大值、最小值列出方程,求出a,b的值.

点评:本题是中档题,考查三角函数的化简求值,最值的应用,单调性的应用,考查计算能力,常考题型.
以上问题属网友观点,不代表本站立场,仅供参考!