在的展开式中,
(1)写出展开式含x2的项;
(2)如果第3r项和第r+2项的二项式系数相等,求r的值.
网友回答
解:(1)展开式的通项? Tk+1 =C10Kx10-k=,令10-k=2,可得 k=6.
∴含x2的项是=26C106x2 =13440x2.
(2)∵C103r-1=C10r+1,∴3r-1=r+1或?3r-1+r+1=10,∴r=1 或r=.
∴r=1.
解析分析:(1)展开式的通项? Tk+1 =,令10-k=2,可得 k的值,从而得到含x2的项.(2)由 C103r-1=C10r+1,可得3r-1=r+1或?3r-1+r+1=10,求出整数 r 的值.
点评:本题考查二项式定理,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,求出二项展开式的通项公式是解题的关键.