已知函数f(x)=2sinωx?(其中ω>o),且函数f(x)的最小正周期为π
(I)求ω的值;
(Ⅱ)将函数y=f(x)的图象向右平移单位长度,再将所得图象各点的横坐标缩小为原来的倍(纵坐标不变)得到函数y=g(x)的图象.求函数g(x)的单调区间.
网友回答
解:(I)∵2sinωxcosωx=sin2ωx,cos2ωx=(1+cos2ωx)
∴f(x)=sin2ωx+(1+cos2ωx)-
=sin2ωx+cos2ωx=2sin(2ωx+)
∵函数f(x)的最小正周期为π
∴=π,解之得ω=1
(II)由(I),得f(x)=2sin(2x+)
将函数y=f(x)的图象向右平移单位长度,得到y=f(x+)的图象;
再将所得图象各点的横坐标缩小为原来的倍(纵坐标不变)得到y=f(2x+)的图象
∴函数y=g(x)的解析式为y=2sin[2(2x+)+],可得g(x)=2sin(4x+)
令-+2kπ≤4x+≤+2kπ,k∈Z,解之得-≤x≤,k∈Z
∴函数g(x)的单调增区间是[-,],k∈Z
同理,令+2kπ≤4x+≤+2kπ(k∈Z ),得g(x)的单调减区间是[,],k∈Z
综上所述,可得g(x)的单调减区间是[,],单调增区间是[-,],k∈Z.
解析分析:(I)利用二倍角的三角函数公式结合辅助角公式进行化简,得f(x)=2sin(2ωx+).再利用三角函数的周期公式即可解出ω的值.(II)根据函数图象平移的规律,可得函数y=g(x)的解析式为g(x)=2sin(4x+),再由正弦函数的单调区间的结论解关于x的不等式,即可求出函数g(x)的单调区间.
点评:本题给出三角函数表达式,求函数的图象平移后所得图象对应函数的单调区间,着重考查了三角恒等变换和三角函数的图象与性质等知识点,属于中档题.