在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=,BC=4,在A1在底面ABC的投影是线段BC的中点O.
(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;
(2)求平面A1B1C与平面BB1C1C夹角的余弦值.
网友回答
(1)证明:连接AO,在△AOA1中,作OE⊥AA1于点E,因为AA1∥BB1,所以OE⊥BB1,
因为A1O⊥平面ABC,所以BC⊥平面AA1O,所以BC⊥OE,
所以OE⊥平面BB1C1C,又AO==1,AA1=,
得AE==,
(2)解:如图,分别以OA,OB,OA1所在直线为x,y,z轴,建立空间直角坐标系,
则A(1,0,0),B(0,2,0),C(0,-2,0),A1(0,0,2)
由,得点E得坐标是(),
设平面A1B1C的法向量是=(x,y,z),由得
令y=1,得x=2,z=-1,所以=(2,1,-1),
所以cos<,>==
即平面A1B1C与平面BB1C1C夹角的余弦值为.
解析分析:(1)连接AO,在△AOA1中,作OE⊥AA1于点E,则E为所求.可以证出OE⊥BB1,BC⊥OE而得以证明.在RT△A1OA中,利用直角三角形射影定理得出EO.(2)如图,分别以OA,OB,OA1所在直线为x,y,z轴,建立空间直角坐标系,求出平面A1B1C的法向量是=(x,y,z),利用,夹角求平面A1B1C与平面BB1C1C夹角的余弦值.
点评:本题考查空间直线和平面位置关系的确定,要熟练掌握应用空间有关的性质、定理;还考查了二面角大小求解,本题具有建立空间直角坐标系的良好空间特征,故用向量法为宜.