如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:所用时间(分钟)10~2020~3030~4040~5050~60L1的频率0.10.20.30.20.2L2的频率00.10.40.40.1现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站.
(Ⅰ)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?
(Ⅱ)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(Ⅰ)的选择方案,求X的分布列和数学期望.
网友回答
解:(Ⅰ)Ai表示事件“甲选择路径Li时,40分钟内赶到火车站”,
Bi表示事件“乙选择路径Li时,50分钟内赶到火车站”,
i=1,2.用频率估计相应的概率可得
∵P(A1)=0.1+0.2+0.3=0.6,
P(A2)=0.1+0.4=0.5,∵P(A1)>P(A2)
∴甲应选择Li
P(B1)=0.1+0.2+0.3+0.2=0.8,
P(B2)=0.1+0.4+0.4=0.9,
∵P(B2)>P(B1),∴乙应选择L2.
(Ⅱ)A,B分别表示针对(Ⅰ)的选择方案,甲、乙在各自允许的时间内赶到火车站,
由(Ⅰ)知P(A)=0.6,P(B)=0.9,
又由题意知,A,B独立,
P(x=1)=P(B+A)=P()P(B)+P(A)P()
=0.4×0.9+0.6×0.1=0.42
P(X=2)=P(AB)=P(A)(B)=0.6×0.9=0.54
X的分布列
EX=0×0.04+1×0.42+2×0.54=1.5.
解析分析:(I)Ai表示事件“甲选择路径Li时,40分钟内赶到火车站”,Bi表示事件“乙选择路径Li时,50分钟内赶到火车站”,用频率估计相应的概率P(A1),P(A2)比较两者的大小,及P(B1),P(B2)的从而进行判断甲与乙路径的选择;(II)A,B分别表示针对(Ⅰ)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(I)知P(A)=0.6,P(B)=0.9,且甲、乙相互独立,X可能取值为0,1,2,分别代入相互独立事件的概率公式求解对应的概率,再进行求解期望即可
点评:本题主要考查了随机抽样用样本估计总体的应用,相互独立事件的概率的求解,离散型随机变量的数学期望与分布列的求解,属于基本知识在实际问题中的应用.